Maximization of the loglikelihood under the DAISIE model with clade-specific diversity-dependence
Source:R/DAISIE_SR_ML_CS.R
DAISIE_SR_ML.Rd
This function computes the maximum likelihood estimates of the parameters of the DAISIE model with clade-specific diversity-dependence and a shift in parameters for data from lineages colonizing an island. It also outputs the corresponding loglikelihood that can be used in model comparisons.
The result of sort(c(idparsopt, idparsfix, idparsnoshift)) should be
identical to c(1:10). If not, an error is reported that the input is
incoherent. The same happens when the length of initparsopt is different
from the length of idparsopt, and the length of parsfix is different from
the length of idparsfix.
Including the 11th parameter (p_f) in either
idparsopt or idparsfix (and therefore initparsopt or parsfix) is optional.
If this parameter is not specified, then the information in the data is
used, otherwise the information in the data is overruled.
Usage
DAISIE_SR_ML_CS(
datalist,
initparsopt,
idparsopt,
parsfix,
idparsfix,
idparsnoshift = 6:10,
res = 100,
ddmodel = 0,
cond = 0,
island_ontogeny = NA,
tol = c(1e-04, 1e-05, 1e-07),
maxiter = 1000 * round((1.25)^length(idparsopt)),
methode = "lsodes",
optimmethod = "subplex",
CS_version = 1,
verbose = 0,
tolint = c(1e-16, 1e-10),
jitter = 0,
num_cycles = 1
)
Arguments
- datalist
Data object containing information on colonisation and branching times. This object can be generated using the DAISIE_dataprep function, which converts a user-specified data table into a data object, but the object can of course also be entered directly. It is an R list object with the following elements.
The first element of the list has two three components:$island_age
- the island age
Then, depending on whether a distinction between types is made, we have:$not_present
- the number of mainland lineages that are not present on the island
The remaining elements of the list each contains information on a single colonist lineage on the island and has 5 components:$colonist_name
- the name of the species or clade that colonized the island$branching_times
- island age and stem age of the population/species in the case of Non-endemic, Non-endemic_MaxAge and Endemic anagenetic species. For cladogenetic species these should be island age and branching times of the radiation including the stem age of the radiation.$stac
- the status of the colonist
* Non_endemic_MaxAge: 1
* Endemic: 2
* Endemic&Non_Endemic: 3
* Non_endemic: 4
* Endemic_MaxAge: 5$missing_species
- number of island species that were not sampled for particular clade (only applicable for endemic clades)- initparsopt
The initial values of the parameters that must be optimized
- idparsopt
The ids of the parameters that must be optimized. The ids are defined as follows:
id = 1 corresponds to lambda^c (cladogenesis rate)
id = 2 corresponds to mu (extinction rate)
id = 3 corresponds to K (clade-level carrying capacity)
id = 4 corresponds to gamma (immigration rate)
id = 5 corresponds to lambda^a (anagenesis rate)
id = 6 corresponds to lambda^c (cladogenesis rate) after the shift
id = 7 corresponds to mu (extinction rate) after the shift
id = 8 corresponds to K (clade-level carrying capacity) after the shift
id = 9 corresponds to gamma (immigration rate) after the shift
id = 10 corresponds to lambda^a (anagenesis rate) after the shift
id = 11 corresponds to the time of shift- parsfix
The values of the parameters that should not be optimized
- idparsfix
The ids of the parameters that should not be optimized, e.g. c(1,3) if lambda^c and K should not be optimized.
- idparsnoshift
The ids of the parameters that should not be different before and after the shift.
- res
Sets the maximum number of species for which a probability must be computed, must be larger than the size of the largest clade
- ddmodel
Sets the model of diversity-dependence:
ddmodel = 0 : no diversity dependence
ddmodel = 1 : linear dependence in speciation rate
ddmodel = 11: linear dependence in speciation rate and in immigration rate
ddmodel = 2 : exponential dependence in speciation rate
ddmodel = 21: exponential dependence in speciation rate and in immigration rate.- cond
cond = 0 : conditioning on island age
cond = 1 : conditioning on island age and non-extinction of the island biota- island_ontogeny
type of island ontonogeny. If NA, then constant ontogeny is assumed.
- tol
Sets the tolerances in the optimization. Consists of:
reltolx = relative tolerance of parameter values in optimization
reltolf = relative tolerance of function value in optimization
abstolx = absolute tolerance of parameter values in optimization.- maxiter
Sets the maximum number of iterations in the optimization.
- methode
Method of the ODE-solver. See package deSolve for details. Default is "lsodes"
- optimmethod
Method used in likelihood optimization. Default is "subplex" (see subplex package). Alternative is 'simplex' which was the method in previous versions.
- CS_version
a numeric or list. Default is 1 for the standard DAISIE model, for a relaxed-rate model a list with the following elements:
model: the CS model to run, options are
1
for single rate DAISIE model,2
for multi-rate DAISIE, or0
for IW test model.relaxed_par: the parameter to relax (integrate over). Options are
"cladogenesis"
,"extinction"
,"carrying_capacity"
,"immigration"
, or"anagenesis"
.
- verbose
sets whether parameters and likelihood should be printed (1) or not (0).
- tolint
Vector of two elements containing the absolute and relative tolerance of the integration.
- jitter
Numeric for
optimizer()
. Jitters the parameters being optimized by the specified amount which should be very small, e.g. 1e-5. Jitter whenlink[subplex]{subplex}()
produces incorrect output due to parameter transformation.- num_cycles
The number of cycles the optimizer will go through. Default is 1.
Value
The output is a dataframe containing estimated parameters and maximum loglikelihood.
- lambda_c
gives the maximum likelihood estimate of lambda^c, the rate of cladogenesis
- mu
gives the maximum likelihood estimate of mu, the extinction rate
- K
gives the maximum likelihood estimate of K, the carrying-capacity
- gamma
gives the maximum likelihood estimate of gamma, the immigration rate
- lambda_a
gives the maximum likelihood estimate of lambda^a, the rate of anagenesis
- lambda_c2
gives the maximum likelihood estimate of lambda^c2, the rate of cladogenesis for the optional second group of species
- mu2
gives the maximum likelihood estimate of mu2, the extinction rate for the optional second group of species
- K2
gives the maximum likelihood estimate of K2, the carrying-capacity for the optional second group of species
- gamma2
gives the maximum likelihood estimate of gamma2, the immigration rate for the optional second group of species
- lambda_a2
gives the maximum likelihood estimate of lambda^a2, the rate of anagenesis for the optional second group of species
- loglik
gives the maximum loglikelihood
- df
gives the number of estimated parameters, i.e. degrees of feedom
- conv
gives a message on convergence of optimization; conv = 0 means convergence
References
Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852. <DOI:10.1111/ele.12461>.
Examples
# \donttest{
## In all following DAISIE_ML calls very high tolerances and low system size
## are used for fast computation for this example. Use default or better
## tol, tolint an res values in actual analyses.
##################
### When all species have the same rates, and we want to optimize all 5
### parameters, we use:
utils::data(Galapagos_datalist)
DAISIE_ML(
datalist = Galapagos_datalist,
initparsopt = c(2.5,2.7,20,0.009,1.01),
ddmodel = 11,
idparsopt = 1:5,
parsfix = NULL,
idparsfix = NULL,
tol = c(0.1, 0.02, 0.01),
tolint = c(1e-4, 1e-2),
res = 50
)
#> lambda_c mu K gamma lambda_a loglik df conv
#> 1 2.15493 2.153129 20 0.009 1.01 -81.28596 5 0
### When all species have the same rates, and we want to optimize all parameters
# except K (which we set equal to Inf), we use:
utils::data(Galapagos_datalist)
DAISIE_ML(
datalist = Galapagos_datalist,
initparsopt = c(2.5,2.7,0.009,1.01),
idparsopt = c(1,2,4,5),
parsfix = Inf,
idparsfix = 3,
tol = c(0.1, 0.02, 0.01),
tolint = c(1e-4, 1e-2),
res = 50
)
#> lambda_c mu K gamma lambda_a loglik df conv
#> 1 3.180506 3.172027 Inf 0.009 1.01 -73.14958 4 0
### When all species have the same rates except that the finches have a different
# rate of cladogenesis, and we want to optimize all parameters except K (which we
# set equal to Inf), fixing the proportion of finch-type species at 0.163, we use:
utils::data(Galapagos_datalist_2types)
DAISIE_ML(
datalist = Galapagos_datalist_2types,
initparsopt = c(0.38,0.55,0.004,1.1,2.28),
idparsopt = c(1,2,4,5,6),
parsfix = c(Inf,Inf,0.163),
idparsfix = c(3,8,11),
idparsnoshift = c(7,9,10),
tol = c(0.1, 0.02, 0.01),
tolint = c(1e-4, 1e-2),
res = 50
)
#> lambda_c mu K gamma lambda_a lambda_c2 mu2 K2
#> 1 0.3840537 0.6146573 Inf 0.003956464 1.193755 3.079965 0.6146573 Inf
#> gamma2 lambda_a2 prop_type2 loglik df conv
#> 1 0.003956464 1.193755 0.163 -69.57021 5 0
### When all species have the same rates except that the finches have a different
# rate of cladogenesis, extinction and a different K, and we want to optimize all
# parameters, fixing the proportion of finch-type species at 0.163, we use:
utils::data(Galapagos_datalist_2types)
DAISIE_ML(
datalist = Galapagos_datalist_2types,
ddmodel = 11,
initparsopt = c(0.19,0.09,0.002,0.87,20,8.9,15),
idparsopt = c(1,2,4,5,6,7,8),
parsfix = c(Inf,0.163),
idparsfix = c(3,11),
idparsnoshift = c(9,10),
tol = c(0.1, 0.02, 0.01),
tolint = c(1e-4, 1e-2),
res = 50
)
#> lambda_c mu K gamma lambda_a lambda_c2 mu2 K2
#> 1 0.2085388 0.1294331 Inf 0.002834096 1.115621 17.09695 6.32994 18.72603
#> gamma2 lambda_a2 prop_type2 loglik df conv
#> 1 0.002834096 1.115621 0.163 -64.80759 7 0
### When all species have the same rates except that the finches have a different
# rate of extinction, and we want to optimize all parameters except K (which we
# set equal to Inf), and we also# want to estimate the fraction of finch species
# in the mainland pool. we use:
utils::data(Galapagos_datalist_2types)
DAISIE_ML(
datalist = Galapagos_datalist_2types,
initparsopt = c(2.48,2.7,0.009,1.01,2.25,0.163),
idparsopt = c(1,2,4,5,7,11),
parsfix = c(Inf,Inf),
idparsfix = c(3,8),
idparsnoshift = c(6,9,10),
tol = c(0.1, 0.02, 0.01),
tolint = c(1e-4, 1e-2),
res = 50
)
#> lambda_c mu K gamma lambda_a lambda_c2 mu2 K2 gamma2
#> 1 2.55745 3.239773 Inf 0.009729946 1.739499 2.55745 1.599674 Inf 0.009729946
#> lambda_a2 prop_type2 loglik df conv
#> 1 1.739499 0.001157252 -71.91278 6 0
### When we have two islands with the same rates except for immigration and anagenesis rate,
# and we want to optimize all parameters, we use:
utils::data(Galapagos_datalist)
DAISIE_ML(
datalist = list(Galapagos_datalist,Galapagos_datalist),
datatype = 'multiple',
initparsopt = c(2.5,2.7,20,0.009,1.01,0.009,1.01),
idparsmat = rbind(1:5,c(1:3,6,7)),
idparsopt = 1:7,
parsfix = NULL,
idparsfix = NULL,
tol = c(0.1, 0.02, 0.01),
tolint = c(1e-4, 1e-2),
res = 50
)
#> lambda_c mu K gamma lambda_a loglik df conv
#> 1 2.3754 2.276205 12.28802 0.008006759 1.223171 -147.3063 7 0
#> 2 2.3754 2.276205 12.28802 0.006590183 1.054042 -147.3063 7 0
### When we consider the four Macaronesia archipelagoes and set all parameters the same
# except for rates of cladogenesis, extinction and immigration for Canary Islands,
# rate of cladogenesis is fixed to 0 for the other archipelagoes,
# diversity-dependence is assumed to be absent
# and we want to optimize all parameters, we use:
utils::data(Macaronesia_datalist)
DAISIE_ML(
datalist = Macaronesia_datalist,
datatype = 'multiple',
initparsopt = c(1.053151832,0.052148979,0.512939011,0.133766934,0.152763179),
idparsmat = rbind(1:5,c(6,2,3,7,5),1:5,1:5),
idparsopt = c(2,4,5,6,7),
parsfix = c(0,Inf),
idparsfix = c(1,3),
tol = c(0.1, 0.02, 0.01),
tolint = c(1e-4, 1e-2),
res = 50
)
#> lambda_c mu K gamma lambda_a loglik df conv
#> 1 0.00000000 1.053152 Inf 0.05214898 0.512939 -447.8626 5 0
#> 2 0.09497184 1.053152 Inf 0.15276318 0.512939 -447.8626 5 0
#> 3 0.00000000 1.053152 Inf 0.05214898 0.512939 -447.8626 5 0
#> 4 0.00000000 1.053152 Inf 0.05214898 0.512939 -447.8626 5 0
# }